首页> 外文OA文献 >MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes
【2h】

MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes

机译:MEG和fMRI融合用于神经和BOLD信号变化的非线性估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system’s behavior by stabilizing the differential equations system and by requiring fewer computational resources.
机译:磁脑电图(MEG)/脑电图和功能磁共振成像(fMRI)测量的组合分析可以改善对大脑活动的动力学和空间特性的描述。在本文中,我们使用模拟和记录的与任务相关的MEG和fMRI活动,通过经验证明了这一改进。神经活动估计值是使用动态贝叶斯网络通过连续蒙特卡洛技术使用具有连续实值参数的动态贝叶斯网络得出的。在合成数据中,我们表明MEG和fMRI融合改善了间接观察到的神经活动的估计,并使血液氧合水平依赖性(BOLD)响应的跟踪更加平滑。在与任务相关的神经活动的记录中,MEG和fMRI的结合产生了具有更高信噪比的结果,证实了实验性质的期望。 BOLD响应的高度非线性模型为神经活动估计提出了一个困难的推理问题。由于时间和空间的复杂性,对计算的要求也很高。我们表明,数据的联合分析通过稳定微分方程组和所需的计算资源较少,可以改善系统的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号